
MiniMarkov

MiniMarkov is a library of routines designed to model state based Markov models. It contains
two classes, markov and result_set. This tutorial demonstrates the use of this library.

Consider a simplified process of leaving a hotel room and exiting the hotel. The following states
may be considered to occur:

● In room
● Hallway
● Lobby
● Hotel door

You then need to set a series of probabilities of moving from state to state. This is called the
Transitions Table and is listed below:

To From

In Room Hallway Lobby Hotel Door

In Room 0.8 0.25 0 0

Hallway 0.2 0.5 0.2 0

Lobby 0 0..25 0.5 0

Hotel Door 0 0 0.3 1

In this table the probability of transitioning between states is laid out. For example, we say that
the likelihood of staying in the room is 0.8, and 0.2 chance of going to the Hallway. From the
Hallway there is a 0.1 chance of going back into the room (forgot a cell phone, e.g.), 0.6 of
staying in the Hallway, and 0.3 that you reach the Lobby. Once in the Lobby there is a 0.2
chance of going back into the Hallway, 0.2 staying in the Lobby, and 0.6 of exiting through the
Hotel Door. Once you reach the Hotel Door, this is a “Terminal” state for the simulation and you
go no further.

So, how do you program this into MiniMarkov and what data can be extracted? Start by
importing Markov and, optionally, a progress bar module to see your progress and a callback
function to implement it. Then define the transition table as a list of lists. Use the mini_markov
build_df function to convert the transition table to a dataframe, then use the run function to
perform the analysis. You get back a result set that the results_range function will give you the
minimum, maximum, mean, median, and standard deviation of the results from the series of
trials.

 Import markov

 import progressbar

 p = progressbar.ProgressBar(maxval=1000).start()

 def callbac(progress):

 p.update(progress)

 return

The above code imports the optional progress bar and sets up the callback function.

 tmatrix = [[0.8,0.2,0,0],[0.25,0.5,0.25,0],[0,0.2,0.5,0.3],[0,0,0,1]]

 names = ['Room', 'Hall', 'Lobby', 'Exit']

 m = mini_markov()

 df = m.build_df(names, tmatrix)

The above code defines the transition matrix as a list of lists as well as the list of names for the
states. You then instantiate mini_markov and use the build_df function to create the formatted
dataframe. Note that the markov class imports pandas and numpy so you do not have to.

 rset = m.run(df,trials=1000,epochs=100,startstate=0,seed=42, log='test.csv',

logtype = 'csv',progress=callbac)

 p.finish()

You then use the run function to run the simulation using the following parameters:
1. The dataframe containing the transition table and names
2. trials=x where x is the number of trials in your simulation, default is 100
3. epochs=y where y is the maximum number of steps per trial, default is 100
4. startstate=z where z is (numerically) the starting state, default is 0
5. log=fn where fn is a filename, default is None. This allows you to see the raw data from

the simulation. Log files can be quite long.
6. logtype=type Default is none, options are text or csv
7. seed=s This is the random number seed for the randomization functions. Default is -1

which is no random seed being set.
8. progress=cb Default is none, this is where you set the callback function to give you a

progress bar.

In this example, rset is of the result_set() subclass containing the trial and epoch data. There
are several result_set() functions that you can use to examine aggregate data.

 print(f'Time spent in each state:\n{rset.counts()[0]} \n{rset.counts()[1]}')

 print(f'Average time through system: {rset.mean_time()}')

 print(rset.results_range())

 values = [20,35,30,10]

 print(rset.value(values))

The counts() function returns state information for each state as a tuple. The first value is the
number of epochs in each state, and the second is the percentage. Note that both are pandas
dataframes. The mean_time() function returns the mean time for going through the system. If
there are no terminal states this may be the maximum epochs value.. results_range() gives the
statistics on the result_set including minimum, maximum, mean, median, and standard deviation
for the number of epochs spent in each state.

A word about value_array and values. You have the option of giving each state a value and then
getting statistics based on those values as well. Declare a list of values, one for each state, then
call result_set.value(value_array) which returns a dataframe containing those same values
when calculated on the modified results array.. Value_array is an optional parameter in
results_range().

Results should look like this:

Time spent in each state:
Room 13326
Hall 6550
Lobby 3213
Exit 994
Name: State, dtype: int64
Room 13.326
Hall 6.550
Lobby 3.213
Exit 0.994
Name: State, dtype: float64
Average time through system: 24.083
 Min Max Mean Median StdDev
Room 1.0 76.0 13.326 9.0 12.610302
Hall 1.0 37.0 6.550 5.0 5.938813
Lobby 1.0 18.0 3.213 2.0 2.682095
Exit 0.0 1.0 0.994 1.0 0.077227
 Min Max Mean Median StdDev

Room 20.0 1520.0 266.52 180.0 252.206046
Hall 35.0 1295.0 229.25 175.0 207.858455
Lobby 30.0 540.0 96.39 60.0 80.462836
Exit 0.0 10.0 9.94 10.0 0.772269

The results will be different for different seeds, and the simulation can be random if the seed
value is -1.

